题目
谢谢定义域在R上的偶函数fx在区间[0.+∞)上是单调递增函数 若f(1)
提问时间:2020-09-20
答案
∵f(x)是偶函数
且f(x)在[0.+∞)上是单调递增函数
∴f(x)在(-∞,0)上是单调递减函数
(1)当lnx≥0,即x≥1时,∵f(1)<f(lnx)
且f(x)在[0.+∞)上是单调递增函数
∴1<lnx
∴x>e
(2)当lnx<0,即0<x<1时,∵f(1)=f(-1)
∴f(-1)<f(lnx)
且f(x)在(-∞,0)上是单调递减函数
∴-1>lnx
∴x<1/e
综上可知:x∈(0,1/e)∪(e,+无穷)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
且f(x)在[0.+∞)上是单调递增函数
∴f(x)在(-∞,0)上是单调递减函数
(1)当lnx≥0,即x≥1时,∵f(1)<f(lnx)
且f(x)在[0.+∞)上是单调递增函数
∴1<lnx
∴x>e
(2)当lnx<0,即0<x<1时,∵f(1)=f(-1)
∴f(-1)<f(lnx)
且f(x)在(-∞,0)上是单调递减函数
∴-1>lnx
∴x<1/e
综上可知:x∈(0,1/e)∪(e,+无穷)
明教为您解答,
请点击[满意答案];如若您有不满意之处,请指出,我一定改正!
希望还您一个正确答复!
祝您学业进步!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1y+x=32
- 2消极应付的反义词是什么
- 3棱长为5厘米的正方体,在他的各面的中间都打一个半径1厘米的圆孔,深1厘米,求打孔后的正方体面积和体积.
- 41.the boy riding a bike is my couson.2.the boy hit by the car is my couson.为什么用riding和hit解释
- 52012年10月1号到2014年12月1号.一共有多少天?
- 6Listen to your wonderful
- 7太阳为什么从东方升起
- 8天色微明,晨雾如轻纱般飘浮在黄海滩涂上.”这句话把晨雾比作 ,写出了
- 9英语翻译
- 10Do it now ,or we will come back late(改为同义句)