当前位置: > 求实数k,使关于x的方程kx^2+(k+1)x+k-1=0的根都是整数...
题目
求实数k,使关于x的方程kx^2+(k+1)x+k-1=0的根都是整数

提问时间:2020-09-18

答案
kx^2+(k+1)x+(k-1)=0
当k=0时,x=1
当k不等于0时
方程化为
x^2+(1+1/k)x+(1-1/k)=0
判别式=(1+1/k)^2-4(1-1/k)=1+1/k^2+2/k-4+k/4
=1/k^2+6/k-3=(1/k+3)^2-12
令1/k+3=a,
a^2-12=b^2
(a+b)(a-b)=12
因为a,b都是整数,所以有:
a+b=2,a-b=6,解得 a=4,b=-2,此时k=1
a+b=6,a-b=2,解得 a=4,b=2
a+b=-2,a-b=-6,得 a=-4,b=2,此时k=-1/7
a+b=-6,a-b=-2,得 a=-4,b=-2
当k=1时,
方程为
x^2+2x=0,两根分别为0,-2,都是整数
当k=-1/7时
方程化为
x^2-6x+8=0,两根分别为2,4,都是整数
所以
k可以取
-1/7,0,1
祝您学习愉快
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.