题目
已知向量OA=(cosa,sina)(a属于[-pai,0]),向量m=(2,1)n=(0,-根号5),且向量m垂直于(向量OA-向量n)
(1)求向量OA
(2)若cos(b-pai)=根号2/10,0
(1)求向量OA
(2)若cos(b-pai)=根号2/10,0
提问时间:2020-09-18
答案
(1)
OA-n=(cosa,sina+根号5)
m垂直于(OA-n),有
(OA-n).m=2cosa+sina+根号5=0
即 2cosa+sina=-根号5
有:根号5*[(2/根号5)*cosa+(1/根号5)*sina]
=-根号5.
整理:sinc*cosa+cosc*sina=-1
sin(a+c)=-1 (1**)
其中角c:满足sinc=2/根号5,
cosc=1/根号5.
由(1**)并结合题设,得:a+c=-90度,
即a=c-90度.
由此:sina=-cosc=-1/根号5,
cosa=sinc=2/根号5
故:OA=(2/根号5,-1/根号5)
=(1/根号5)*(2,-1)
(2)可求得:cos(b-pai)=-cosb=(根号2)/10.
即cosb=(根号2)/10 (2**)
cos(2a-b)=cos2a*cosb+sin2a*sinb
而:cos2a=2*(cosa)^2-1=3/5,
sin2a=2*sina*cosa=-4/5
又求得sinb=7*根号2/10,
或 sinb=-7*根号2/10
故cos(2a-b)=
=(3/5)*(-根号2)/10)+(-4/5)*(7*根号2)/10
=-(31根号2)/50,
或:
cos(2a-b)=
=(3/5)*(-根号2)/10)+(-4/5)*(-7*根号2)/10
=25*(根号2)/50=(根号2)/2.
结论:cos(2a-b)=(根号2)/2,
或cos(2a-b)=-31*(根号2)/50.
OA-n=(cosa,sina+根号5)
m垂直于(OA-n),有
(OA-n).m=2cosa+sina+根号5=0
即 2cosa+sina=-根号5
有:根号5*[(2/根号5)*cosa+(1/根号5)*sina]
=-根号5.
整理:sinc*cosa+cosc*sina=-1
sin(a+c)=-1 (1**)
其中角c:满足sinc=2/根号5,
cosc=1/根号5.
由(1**)并结合题设,得:a+c=-90度,
即a=c-90度.
由此:sina=-cosc=-1/根号5,
cosa=sinc=2/根号5
故:OA=(2/根号5,-1/根号5)
=(1/根号5)*(2,-1)
(2)可求得:cos(b-pai)=-cosb=(根号2)/10.
即cosb=(根号2)/10 (2**)
cos(2a-b)=cos2a*cosb+sin2a*sinb
而:cos2a=2*(cosa)^2-1=3/5,
sin2a=2*sina*cosa=-4/5
又求得sinb=7*根号2/10,
或 sinb=-7*根号2/10
故cos(2a-b)=
=(3/5)*(-根号2)/10)+(-4/5)*(7*根号2)/10
=-(31根号2)/50,
或:
cos(2a-b)=
=(3/5)*(-根号2)/10)+(-4/5)*(-7*根号2)/10
=25*(根号2)/50=(根号2)/2.
结论:cos(2a-b)=(根号2)/2,
或cos(2a-b)=-31*(根号2)/50.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 11.()选出电子总数为10的微粒
- 2向量A=(cosWx+根号3sinWx,1),B=(f(x),cosWx),其中W>0,且A//B,又函数F(x)的图象相邻对称轴间距离3/2π
- 3一般将来时态,will+动词原形,与be going to原形,在运用的区分上我总是应用不好,
- 4老人与海鸥,联系老人生前的具体事迹,请你以海鸥的身份给老人写一段碑文
- 5电路原理中的KCL和KVL是什么
- 6求边长为4的正十二边形的面积
- 7求级数在收敛区间的和函数
- 8亚当.斯密和大卫.李嘉图的相关经济学观点中的相似点,并对这两个经济学家的观点做简要评析.
- 9某有机物有C,H,O三种元素,含C40%,H6,67%,有机物蒸气密度是同状况乙烯气体密度的1.072倍
- 10稀释涂布平板法的接种工具
热门考点