当前位置: > 设f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围....
题目
设f(x)=x2-2ax+2(a∈R),当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.

提问时间:2020-09-16

答案
f(x)=x2-2ax+2=(x-a)2+2-a2f(x)图象的对称轴为x=a为使f(x)≥a在[-1,+∞)上恒成立,只需f(x)在[-1,+∞)上的最小值比a大或等于a即可∴(1)a≤-1时,f(-1)最小,解,解得-3≤a≤-1  (2)a≥-1时...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.