当前位置: > 双曲线x²/n-y²=1的左右两焦点分别为F1,F2,P在双曲线上且满足|PF1|+|PF2|= 2√(n+2) 则S△PF1F2=...
题目
双曲线x²/n-y²=1的左右两焦点分别为F1,F2,P在双曲线上且满足|PF1|+|PF2|= 2√(n+2) 则S△PF1F2=
n=a^2
a=√n
由双曲线定义
假定PF1>PF2
令PF1=p,PF2=q
p-q=2a=2√n
p+q=2√(n+2)
(p+q)^2-(p-q)^2=4pq=8
pq=2
F1F2=2c=2√(n+1)
由余弦定理
cosF1PF2=(p^2+q^2-F1F2^2)/2pq
p^2+q^2=(p-q)^2+2pq=4n+4
所以cosF1PF2=(4n+4-4n-4)/4=0
所以F1PF2是直角
所以S=pq/2=1
p-q和p+q是根据什么得出来的?
第五六行

提问时间:2020-09-08

答案
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.