题目
过抛物线y2=4x的焦点,作直线与此抛物线相交于两点P和Q,那么线段PQ中点的轨迹方程是( )
A. y2=2x-1
B. y2=2x-2
C. y2=-2x+1
D. y2=-2x+2
A. y2=2x-1
B. y2=2x-2
C. y2=-2x+1
D. y2=-2x+2
提问时间:2020-09-04
答案
抛物线y2=4x的焦点F(1,0),当线段PQ的斜率存在时,设线段PQ所在的直线方程为 y-0=k(x-1),代入抛物线y2=4x得,k2x2-(2k2+4)x+k2=0,∴x1+x2=2k2+4k2.设线段PQ中点H( x,y ),则由中点公式得 x=k2+2k2,∴y...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点