当前位置: > 已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x. (Ⅰ)求函数g(x)的解析式; (Ⅱ)解不等式g(x)≥f(x)-|x-1|....
题目
已知函数f(x)和g(x)的图象关于原点对称,且f(x)=x2+2x.
(Ⅰ)求函数g(x)的解析式;
(Ⅱ)解不等式g(x)≥f(x)-|x-1|.

提问时间:2020-09-03

答案
(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g(x)的图象上,
 且
x0+x
2
=0
y0+y
2
=0
,即
x0=-x
y0=-y.

∵点Q(x0,y0)在函数y=f(x)的图象上,
∴-y=x2-2x,即y=-x2+2x,故,g(x)=-x2+2x.
(Ⅱ)由g(x)≥f(x)-|x-1|,可得2x2-|x-1|≤0
当x≥1时,2x2-x+1≤0,此时不等式无解.
当x<1时,2x2+x-1≤0,解得-1≤x≤
1
2
.因此,原不等式的解集为[-1,
1
2
].
(Ⅰ)设函数y=f(x)的图象上任意一点Q(x0,y0)关于原点的对称点为P(x,y),则P在g(x)的图象上,由线段的中点公式解出 x0和y0 的解析式,代入函数y=f(x)可得g(x)的解析式.
(Ⅱ)不等式可化为 2x2-|x-1|≤0,分类讨论,却掉绝对值,求出不等式的解集.

绝对值不等式的解法;函数解析式的求解及常用方法.

本题考查求函数的解析式的方法以及解绝对值不等式的方法,体现了分类讨论的数学思想.

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.