当前位置: > 已知∠AOB的边OA上有5个点,边OB上有6个点,用这些点和O点为顶点,能构成多少个不同的三角形?...
题目
已知∠AOB的边OA上有5个点,边OB上有6个点,用这些点和O点为顶点,能构成多少个不同的三角形?

提问时间:2020-09-02

答案
由题意知本题需要分类来解,
以O为三角形顶点,其余两顶点分别在OA和OB上取,能构成C51•C61=30个三角形;
O不为顶点,又可分为两类,即在OA上取两点,OB上取一点,
或在OA上取一点,OB上取两点,
则能构成C52•C61+C51•C62=10×6+5×15=135(个)三角形.
∴能构成不同的三角形共有C61•C51+C52•C61+C51•C62=165(个).
即能构成三角形165个.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.