当前位置: > 证明所有k,n属于整数,(k-n)能被(k-1)整除当且仅当(k-n)能被(n-1)整除.英文原题:For all k,n in Z,(k-n) divides (k-1) if only if (k...
题目
证明所有k,n属于整数,(k-n)能被(k-1)整除当且仅当(k-n)能被(n-1)整除.英文原题:For all k,n in Z,(k-n) divides (k-1) if only if (k-n) divides (n-1)

提问时间:2020-08-29

答案
假设(k-n)=A(k-1),由题意知n不等于1,所有k,n属于整数,所以A不等于1.则(k-n)=A(k-n+n-1)=A(k-n)+A(n-1),也就是(1-A)(k-n)=A(n-1),即(k-n)=(n-1)[A/(1-A)],假设Q=A/(1-A)是整数,则A=Q/(1...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.