当前位置: > 求证:等腰三角形两腰上的高的交点到底边两端的距离相等....
题目
求证:等腰三角形两腰上的高的交点到底边两端的距离相等.

提问时间:2020-08-28

答案
已知:△ABC中AB=AC,CE⊥AB,BD⊥AC,交点为O,
求证:OB=OC.
证明:∵AB=AC,
∴∠ABC=∠ACB.
∵CE⊥AB,BD⊥AC,
∴∠CEB=∠BDC=90°.
∵BC=CB,
∴△CBE≌△BCD.
∴∠ECB=∠DBC.
∴OB=OC.
即等腰三角形两腰上的高的交点到底边两端的距离相等.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.