当前位置: > 怎样证明三角函数的和差化积公式...
题目
怎样证明三角函数的和差化积公式
sinA+sinB=2*sin[(A+B)/2]*cos[(A-B)/2]
sinA-sinB=2*sin[(A-B)/2]*cos[(A+B)/2]
cosA+cosB=2*cos[(A+B)/2]*cos[(A-B)/2]
cosA-cosB=-2*sin[(A+B)/2]*sin[(A-B)/2]

提问时间:2020-08-27

答案
第一个公式的证明:右边=2*sin[(A+B)/2]*cos[(A-B)/2]=2*[sin(A/2)*cos(B/2)+cos(A/2)sin(B/2)]*[cos(A/2)cos(B/2)+sin(A/2)sin(B/2)]=2*sin(A/2)*cos(A/2)*cos(B/2)*cos(B/2)+2*cos(A/2)*cos(A/2)*sin(B/2)*cos(B/2)...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.