当前位置: > 指数分布 期望 方差是怎么证明的...
题目
指数分布 期望 方差是怎么证明的

提问时间:2020-08-27

答案
首先知道EX=1/a DX=1/a^2
指数函数概率密度函数:f(x)=a*e^(ax),x>0,其中a>0为常数.
f(x)=0,其他
有连续行随机变量的期望有E(X)==∫|x|*f(x)dx,(积分区间为负无穷到正无穷)
则E(X)==∫|x|*f(x)dx,(积分区间为0到正无穷),因为负无穷到0时函数值为0.
EX)==∫x*f(x)dx==∫ax*e^(-ax)dx=-(xe^(-ax)+1/a*e^(-ax))|(正无穷到0)=1/a
而E(X^2)==∫x^2*f(x)dx=∫x^2*a*e^(ax)dx=-(2/a^2*e^(-ax)+2x*e^(-ax)+ax^2*e^(-ax))|(正无穷到0)=2/a^2,
DX=E(X^2)-(EX)^2=2/a^2-(1/a)^2=1/a^2
即证!
主要是求积分的问题,证明只要按照连续型随机变量的期望与方差的求法公式就行啦!
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.