当前位置: > 设函数f(x)=(1-1/x)的绝对值,x>0证明当0<a<b且f(a)=f(b)时,ab>1...
题目
设函数f(x)=(1-1/x)的绝对值,x>0证明当0<a<b且f(a)=f(b)时,ab>1

提问时间:2020-08-27

答案
当x>0时,1-1/x是递增函数所以由当0<a<b且f(a)=f(b)时可知f(a)=-(1-1/a)=1/a-1,f(b)=1-1/b所以1/a-1=1-1/b,即1/a+1/b=2又因为0<a<b,可得a+b>2√(ab)(√为根号)2=1/a+1/b=(a+b)/(ab)>2√(ab)/(ab)=2/√(ab)...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.