当前位置: > 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,点P,Q在斜边AB上,且∠PCQ=45°.求证PQ的平方=AP∧2+BQ∧2...
题目
如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,点P,Q在斜边AB上,且∠PCQ=45°.求证PQ的平方=AP∧2+BQ∧2
详细证明过程

提问时间:2020-08-27

答案
PQ^2=CQ^2+PC^2-2^(1/2)CQ*PC
同理有BC,BQ,QC ;AC,AP,PC的关系
三式化简(AC=BC)有
PQ^2=AP^2+BQ^2+2^(1/2)(AC*QP-CQ*CP)
又三角形QPC与三角形QCA相似
有AC*QP-CQ*CP=0
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.