当前位置: > 在△ABC中,角A,B,C所对的边分别是a,b,c,若三角形面积S=根号3/4(a^2+b^2-c^2),求sinA+sinB的最大值...
题目
在△ABC中,角A,B,C所对的边分别是a,b,c,若三角形面积S=根号3/4(a^2+b^2-c^2),求sinA+sinB的最大值

提问时间:2020-08-26

答案
由余弦定理
c²=a²+b²-2abcosC
即a²+b²-c²=2abcosC
∴S=(√3/2)abcosC
又∵S=(1/2)absinC
∴√3/2cosC=1/2sinC,√3=tanC
∴C=60°
∴A+B=120°,B=120°-A
sinA+sinB=sinA+sin(120°-A)
=sinA+cosAsin120°-sinAcos120°
=3/2sinA+√3/2cosA
=√3[(√3/2)sinA+(1/2)cosA]
=√3sin(A+30°)
0°<A<120°
∴当A=60°时,sinA+sinB有最大值√3
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.