当前位置: > 是否存在θ使得关于x的方程x^2-(tanθ+i)x-(2+i)=0有实根?若存在,求出θ和实根,若不存在,说明理由...
题目
是否存在θ使得关于x的方程x^2-(tanθ+i)x-(2+i)=0有实根?若存在,求出θ和实根,若不存在,说明理由

提问时间:2020-08-25

答案
假设存在
设实数根是m
则m^2-mtana-2-(m+1)i=0
则虚部是0
则m^2-mtana-2=-(m+1)=0
m=-1
tana=1
a=π/4+kπ
方程式x²-(1+i)x-(2+i)=0
x²-x-2-i(x+1)=0
x+1=0
x²-x-2=0
实数根是-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.