题目
已知函数f(x)=xlnx,g(x)=x/e^x-2/e
(1)求函数f(x)在区间[1,3]上的最小值
2)证明对任意m,n{ -(0,+oo),都有f(m)>=g(n)成立
(1)求函数f(x)在区间[1,3]上的最小值
2)证明对任意m,n{ -(0,+oo),都有f(m)>=g(n)成立
提问时间:2020-08-25
答案
f(x)=xlnx
f(x)=xlnx的导数为lnx+1 在区间[1,3]恒大于0
所以f(x)=xlnx 在区间[1,3]单调递增
最小值为f(1)=1
(2)
f'(x)=1+lnx 故f在(负无穷,1/e)递减,在(1/e,正无穷)递增.即f(1/e)=-1/e是f的最小值.
另一方面,g'(x)=e^(-x)*(1-x),故同理g(1)=-1/e是g的最大值.
即 f(m)>=-1/e,g(n)=g(n)
f(x)=xlnx的导数为lnx+1 在区间[1,3]恒大于0
所以f(x)=xlnx 在区间[1,3]单调递增
最小值为f(1)=1
(2)
f'(x)=1+lnx 故f在(负无穷,1/e)递减,在(1/e,正无穷)递增.即f(1/e)=-1/e是f的最小值.
另一方面,g'(x)=e^(-x)*(1-x),故同理g(1)=-1/e是g的最大值.
即 f(m)>=-1/e,g(n)=g(n)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1有一钟表,每小时慢2分钟,早上8点时,把表对准了标准时间,当中午钟表走到12点整的时候,标准时间为_.
- 2两个判断对错
- 3斜率是什么,截距是什么
- 4摆的快慢与摆锤的重量有关吗
- 5已知集合A={a,a+d,a+2d},B={a,aq,aq2},其中d不等于q,A=B,求d和q的值
- 6重30牛的木块,受向右、大小为10牛的拉力作用,沿水平方向做匀速直线运动
- 7已知f(x)=1/x+1,则f(x+1)等于
- 8在离散数学中 两个图同构是否说明这两个图的顶点数和边长数相等
- 9It is really that there are many similar things between you and her.
- 10如果广义积分∫(0,1)x^(2-p)dx收敛,则p的范围是?
热门考点