题目
在棱长为1的正四面体ABCD中,E为AD的中点,试求CE与面BCD所成的角
提问时间:2020-08-25
答案
设F为BC的中点,G为E在平面BCD上的垂足.
sin∠EFD=(1/2)/(√3/2)=1/√3.
cos∠EFD=√(2/3).
EF=FD×cos∠EFD=(√3/2)×√(2/3)=1/√2.
FG=FE×cos∠EFD=(1/√2)×√(2/3)=1/√3.
CG²=CF²+FG²=(1/2)²+(1/√3)²=7/12.
CG=√(7/12).
cos∠ECG=CG/CE=√(7/12)/(√3/2)=√7/3.
∠ECG=arccos(√7/3)≈28°15′.
这就是CE与平面BCD所成的角.
sin∠EFD=(1/2)/(√3/2)=1/√3.
cos∠EFD=√(2/3).
EF=FD×cos∠EFD=(√3/2)×√(2/3)=1/√2.
FG=FE×cos∠EFD=(1/√2)×√(2/3)=1/√3.
CG²=CF²+FG²=(1/2)²+(1/√3)²=7/12.
CG=√(7/12).
cos∠ECG=CG/CE=√(7/12)/(√3/2)=√7/3.
∠ECG=arccos(√7/3)≈28°15′.
这就是CE与平面BCD所成的角.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点