当前位置: > AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,则三角形F1AB的面积最大值...
题目
AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,则三角形F1AB的面积最大值

提问时间:2020-08-20

答案
因为AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,△F1AB面积最大
所以A(0,b) B(0,-b)
三角形F1AB的面积可表示为:1/2| AB | * | OF1 |=1/2*2b*c=bc
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.