当前位置: > 定义在R上的单调函数f(x)满足f(3)=log以2为底3的对数 且对任意x y 都有f(x+y)=f(x)+f(y) 求证f(x)为奇函...
题目
定义在R上的单调函数f(x)满足f(3)=log以2为底3的对数 且对任意x y 都有f(x+y)=f(x)+f(y) 求证f(x)为奇函

提问时间:2020-08-17

答案
x=y=0时,有:f(0)=f(0)+f(0),所以f(0)=0
当x=-y≠0时,有:f(x+y)=f(0)=0=f(x)+f(y)=f(x)+f(-x)
所以f(x)=-f(-x)
所以f(x)是奇函数.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.