当前位置: > 从1开始的若干个连续奇数:1,3,5,7,…从中擦去一个奇数后,剩下的所有奇数之和为2008,擦去的奇数是多少?...
题目
从1开始的若干个连续奇数:1,3,5,7,…从中擦去一个奇数后,剩下的所有奇数之和为2008,擦去的奇数是多少?

提问时间:2020-08-13

答案
奇数数列从1加到2n-1的和为:
(1+2n-1)×n÷2=n2>2008,
又因为442=1936<1998,452=2025>2008;
所以n=45,擦去的奇数是2025-2008=17.
答:擦去的奇数是17.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.