题目
根据函数单调性定义证明:f(x)=x/(x^2+1)在(-1,1)上为增函数
提问时间:2020-08-12
答案
任取x1,x2∈(-1,1)
Δx=x1-x2>0
Δy=x2/(x2^2+1)-x1/(x1^2+1)
=[x2(x1^2+1)-x1(x2^2+1)]/[(x2^2+1)(x1^2+1)]
=(x2*x1^2-x1*x2^2+x2-x1)/[(x2^2+1)(x1^2+1)]
=[x1*x2(x1-x2)+x2-x1]/[(x2^2+1)(x1^2+1)]
=(1-x1*x2)(x2-x1)/[(x2^2+1)(x1^2+1)]
>0
所以为增函数
Δx=x1-x2>0
Δy=x2/(x2^2+1)-x1/(x1^2+1)
=[x2(x1^2+1)-x1(x2^2+1)]/[(x2^2+1)(x1^2+1)]
=(x2*x1^2-x1*x2^2+x2-x1)/[(x2^2+1)(x1^2+1)]
=[x1*x2(x1-x2)+x2-x1]/[(x2^2+1)(x1^2+1)]
=(1-x1*x2)(x2-x1)/[(x2^2+1)(x1^2+1)]
>0
所以为增函数
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点