当前位置: > 以椭圆x2/12+y2/3=1的焦点为焦点,过直线L:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M在何处?...
题目
以椭圆x2/12+y2/3=1的焦点为焦点,过直线L:x-y+9=0上一点M作椭圆,要使所作椭圆的长轴最短,点M在何处?

提问时间:2020-08-12

答案
就是在直线上取一点使MF1+MF2最小
椭圆x2/12+y2/3=1
焦点F1(-3,0) F2 (3,0)
F1关于直线的对称点F1'(-9,6)
连接F2F1'交直线与M点
直线F2F1'的方程
x+2y-3=0
x-y+9=0
y=4
x=-5
点M(-5,4)
2a=|F1'F2|=6根5
a=3根5
a^2=45
b^2=a^2-c^2=36
椭圆的方程
x^2/45+y^2/36=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.