当前位置: > f(x)=log1/3(x^2-ax-a)在区间(-∞,1-根号3)上是增函数,求a取值范围...
题目
f(x)=log1/3(x^2-ax-a)在区间(-∞,1-根号3)上是增函数,求a取值范围
1/3是对数的底

提问时间:2020-08-11

答案
因为函数y=log1/3(x^2-ax-a)在区间(-∞,1-√3)内是增函数
函数可看成是由y=log1/2(t)与t=x^2-ax-a复合而成,根据复合函数单调性的同增异减法则,以及二次函数的性质,必须函数t=x^2-ax-a在对称轴左边的图像也是单调递减的,所以 a/2≥1-√3 ,即a≥2(1-√3)
x∈(-∞,1-√3)时,真数x^2-ax-a>0恒成立,
函数t=x^2-ax-a在对称轴左边的图像是单调递减的,所以只需t的最小值大于0即可,
即x=1-√3时,t的值大于0,
即(1-√3)^2-a*(1-√3)-a>0,
解得a
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.