当前位置: > 定义在R上的函数图像关于点(-3/4,0)成中心对称,对任意的实数X都有f(X)+f(x+3/2)=0...
题目
定义在R上的函数图像关于点(-3/4,0)成中心对称,对任意的实数X都有f(X)+f(x+3/2)=0
且f(-1)=1,f(0)=-2,则f(1)+f(2)+f(3)+……+f(2008)+f(2009)=
我有答案就是看不懂怎么证明它是偶函数,求大神证明下

提问时间:2020-08-10

答案
∵函数图像关于点(-3/4,0)成中心对称
∴f(-3/4+x)=-f(-3/4-x)
将x换成-x+4/3得:
∴f(-x)=-f(-3/2+x) ①
∴f(-3/2+x)=-f(x)
∵f(X)+f(x+3/2)=0
将x换成-3/2+x得
f(-3/2+x)+f(x)=0 ②
由①②得
-f(x)+f(x)=0 即 f(-x)=f(x)
∴f(x)是偶函数
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.