当前位置: > 抛物线y=-x^/2与过点M(0,-1)的直线相交于AB两点,O为坐标原点,若直线OA和OB的斜率之和为1,求直线的方程...
题目
抛物线y=-x^/2与过点M(0,-1)的直线相交于AB两点,O为坐标原点,若直线OA和OB的斜率之和为1,求直线的方程

提问时间:2020-08-10

答案
y=-x^/2是什么意思?是不是y=-x^2?如果是,解题过程如下:
可设直线为y-(-1)=k(x-0)即y=kx-1,设A(X1,Y1) B(X2,Y2)
因为直线OA和OB的斜率之和为1,所以YI/X1+Y2/X2=1
即(KX1-1)/X1+(KX2-1)/X2=1,化简为2K=1+(X1+X2)/X1X2,
将y=kx-1带入y=-x^2得X^2+KX-1=0
所以由韦达定理得:X1+X2=-K X1X2=-1
则得到方程2K=1+K
所以解得K=1
所以直线为y=x-1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.