题目
已知抛物线C:y2=4x 的焦点为F.
(1)点A,P满足
AP
=-2
FA
.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.
(1)点A,P满足
AP
=-2
FA
.当点A在抛物线C上运动时,求动点P的轨迹方程;
(2)在x轴上是否存在点Q,使得点Q关于直线y=2x的对称点在抛物线C上?如果存在,求所有满足条件的点Q的坐标;如果不存在,请说明理由.
提问时间:2020-08-10
答案
抛物线C:y^2=4x 的焦点为F(1,0),
设点A(m,n),P(x,y),由向量AP=-2FA,得
(x-m,y-n)=-2(m-1,n),
∴x-m=-2(m-1),y-n=-2n,
∴m=2-x,n=-y.
点A在抛物线C上,
∴(-y)^2=4(2-x),即y^2=-4(x-2),为动点P的轨迹方程.
(2)设Q(q,0),则Q关于直线y=2x的对称点R(4t^2,4t)满足
QR的斜率=4t/(4t^2-q)=-1/2,8t=q-4t^2,①
QR的中点((q+4t^2)/2,2t)在直线y=2x上,即2t=q+4t^2,②
②-①,-6t=8t^2,t=0或-3/4,
代入①,q=0(舍),或-15/4.
∴Q(-15/4,0).
设点A(m,n),P(x,y),由向量AP=-2FA,得
(x-m,y-n)=-2(m-1,n),
∴x-m=-2(m-1),y-n=-2n,
∴m=2-x,n=-y.
点A在抛物线C上,
∴(-y)^2=4(2-x),即y^2=-4(x-2),为动点P的轨迹方程.
(2)设Q(q,0),则Q关于直线y=2x的对称点R(4t^2,4t)满足
QR的斜率=4t/(4t^2-q)=-1/2,8t=q-4t^2,①
QR的中点((q+4t^2)/2,2t)在直线y=2x上,即2t=q+4t^2,②
②-①,-6t=8t^2,t=0或-3/4,
代入①,q=0(舍),或-15/4.
∴Q(-15/4,0).
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1x^(n-2)+x^(n-4) ………… 实数域上因式分解
- 2从邹忌与徐公比美中悟出的治国道理是
- 3C:质量分数为37%的浓盐酸,密度是1.19g|cm,求盐酸中的hci的物质的量的浓度?
- 4英语翻译
- 5DNA边解旋边复制的过程,DNA复制起始时,首先利用细胞提供的能量,在解旋酶的作用下解旋,当解开大约十几个核苷.
- 6二次函数如何设题
- 7我至今都不明白,从初中到高中有三位数学老师都说自己很有数学天赋,但自己的数学成绩并不是顶尖的,只是在
- 8have got的语法
- 9过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为( ) A.30° B.45° C.60° D.90°
- 10初一科学问题(关于机械运动的!)
热门考点