当前位置: > 已知函数y=f(x)的定义域为(4a-3,3-2a2),且y=f(2x-3)为偶函数,则实数a的值为(  ) A.3或-1 B.-3或1 C.1 D.-1...
题目
已知函数y=f(x)的定义域为(4a-3,3-2a2),且y=f(2x-3)为偶函数,则实数a的值为(  )
A. 3或-1
B. -3或1
C. 1
D. -1

提问时间:2020-08-10

答案
由题知,4a-3<3-2a2,即-3<a<1,
又y=f(2x-3)为偶函数,则有4a-3<2x-3<3-2a2,即2a<x<3-a2
∴y=f(2x-3)的定义域(2a,3-a2
由偶函数的定义域关于原点对称可得2a=-3+a2
∴a=-1或3,
∵-3<a<1,
∴a=-1
故选D
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.