当前位置: > 求定积分∫[-π/2~π/2][sinx/1+x^2+(cosx)^2]dx...
题目
求定积分∫[-π/2~π/2][sinx/1+x^2+(cosx)^2]dx

提问时间:2020-08-10

答案
如果是∫(-π/2~π/2) sinx/(1 + x² + cos²x) dx,分子奇函数,分母偶函数,整式是奇函数
所以该定积分等于0
如果是:
∫(-π/2~π/2) [sinx/(1 + x²) + cos²x] dx
= ∫(-π/2~π/2) sinx/(1 + x²) dx + ∫(-π/2~π/2) cos²x dx,前面一项奇函数,后面一项偶函数
= 0 + 2∫(0~π/2) cos²x dx
= 2∫(0~π/2) (1 + cos2x)/2 dx
= x + 1/2 * sin2x |(0~π/2)
= π/2
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.