当前位置: > 直线l:y=mx+1,双曲线C:3x2-y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点....
题目
直线l:y=mx+1,双曲线C:3x2-y2=1,问是否存在m的值,使l与C相交于A,B两点,且以AB为直径的圆过原点.

提问时间:2020-08-10

答案
假设存在m值满足条件,设A、B坐标分别为(x1,y1)(x2,y2),由y=mx+13x2−y2=1得:(3-m2)x2-2mx-2=0,则3-m2≠0,且△=4m2-4(3-m2)(-2)>0,得m2<6且m2≠3①,由韦达定理有:x1+x2=2m3−m2,x1x2=−23...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.