题目
√x(sinx+cosx)/(1+x)在x趋近于无穷时的极限 e的-1/|x|次幂乘arctan(1/x)+cosx在x趋近于0时的极限
提问时间:2020-08-10
答案
x趋近于正无穷时,lim√x(sinx+cosx)/(1+x)=lim(sinx+cosx)/(1/√x+√x)
=limC/(1/√x+√x)=0 (-根号2<=C=sinx+cosx<=根号2)
x趋近于0+时,lime^(-1/|x|)*[arctan(1/x)+cosx]=lime^(-1/|x|)*[limarctan(1/x)+limcosx]=e^0*[arctan(正无穷)+cos(0+)]=π/2+1
x趋近于0-时,lime^(-1/|x|)*[arctan(1/x)+cosx]=lime^(-1/|x|)*[limarctan(1/x)+limcosx]=e^0*[arctan(负无穷)+cos(0-)]=-π/2+1
x趋近于0+时和0-时,两者极限不等,所以x趋近于0时lime^(-1/|x|)*[arctan(1/x)+cosx]无极限.
=limC/(1/√x+√x)=0 (-根号2<=C=sinx+cosx<=根号2)
x趋近于0+时,lime^(-1/|x|)*[arctan(1/x)+cosx]=lime^(-1/|x|)*[limarctan(1/x)+limcosx]=e^0*[arctan(正无穷)+cos(0+)]=π/2+1
x趋近于0-时,lime^(-1/|x|)*[arctan(1/x)+cosx]=lime^(-1/|x|)*[limarctan(1/x)+limcosx]=e^0*[arctan(负无穷)+cos(0-)]=-π/2+1
x趋近于0+时和0-时,两者极限不等,所以x趋近于0时lime^(-1/|x|)*[arctan(1/x)+cosx]无极限.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1某班同学去18千米的北山郊游,只有一辆汽车,需分两组,甲组先乘车,乙组步行.车行至a处,甲组下车步行,汽车返回接乙组,最后两组同时到达北山站.已知汽车速度60千米/时,步行速度4千米/时,求a点距北山
- 2关于液体对容器底部压力的问题
- 3英语翻译
- 4乞巧这首诗主要描写了什么
- 5SMOKING IS HARMFUL TO YOUR HEALTH QUIT SMOKING REDUCES HEAL HEAL TH
- 6一棵树的周长是1.8米这棵树的半径大约是多少米?(得数保留一位小数)
- 7红星小学图书馆内,科技书是故事书的3倍,连环画书又是科技书的2倍,已知这三种书共有1600本,那么每一种书各有多少本?
- 8胳膊的英文单词怎么拼写
- 9仓库有一批水果,第一天卖出480吨,第二天卖出余下的3/8.这时,剩下的与卖出的重量比是5:7,仓库里原来共有水果多少吨?
- 10如何根据电阻上的颜色环来认识它
热门考点