题目
在△ABC中,已知顶点A(5,-1),角B、角C的平分线所在的直线方程分别为3x+y+6=0和2x-y+4=0,求三角形三边所在直线的方程
提问时间:2020-08-10
答案
∵∠B的平分线所在的直线方程是3x+y+6=0
∴tan[π-(B/2)]=-3(∠B的平分线所在的直线的斜率),即tan(B/2)=3.
∴tanB=2tan(B/2)/[1-tan(B/2)^2]=(2*3)/(1-3^2)=6/(-8)=-3/4
∴直线AB的斜率为-3/4.
∵直线AB过点A(5,-1)
∴直线AB的方程是y+1=(-3/4)(x-5),即3x+4y-11=0.
∵∠C的平分线所在的直线方程是2x-y+4=0
∴tan(C/2)=2(∠C的平分线所在的直线的斜率)
∴tanC=2tan(C/2)/[1-tan(C/2)^2]=(2*2)/(1-2^2)=-4/3
∵直线AC过点A(5,-1)
∴直线AC的方程是y+1=(-4/3)(x-5),即4x+3y-17=0.
由角平分线的性质可知,点A关于两条内角平分线的对称点都在直线BC上.
设点A关于直线3x+y+6=0的对称点为(a,b),则
(b+1)/(a-5)=1/3,3(a+5)/2+(b-1)/2+6=0,解得:a=-7,b=-5
设点A关于直线2x-y+4=0的对称点为(c,d),则
(d+1)/(c-5)=-1/2,2*(c+5)/2-(d-1)/2+4=0,解得:c=-7,d=5
则点(-7,-5)和点(-7,5)都在直线BC上,易得出直线BC的方程就是x=-7.
楼主,不知道对不对啊!
∴tan[π-(B/2)]=-3(∠B的平分线所在的直线的斜率),即tan(B/2)=3.
∴tanB=2tan(B/2)/[1-tan(B/2)^2]=(2*3)/(1-3^2)=6/(-8)=-3/4
∴直线AB的斜率为-3/4.
∵直线AB过点A(5,-1)
∴直线AB的方程是y+1=(-3/4)(x-5),即3x+4y-11=0.
∵∠C的平分线所在的直线方程是2x-y+4=0
∴tan(C/2)=2(∠C的平分线所在的直线的斜率)
∴tanC=2tan(C/2)/[1-tan(C/2)^2]=(2*2)/(1-2^2)=-4/3
∵直线AC过点A(5,-1)
∴直线AC的方程是y+1=(-4/3)(x-5),即4x+3y-17=0.
由角平分线的性质可知,点A关于两条内角平分线的对称点都在直线BC上.
设点A关于直线3x+y+6=0的对称点为(a,b),则
(b+1)/(a-5)=1/3,3(a+5)/2+(b-1)/2+6=0,解得:a=-7,b=-5
设点A关于直线2x-y+4=0的对称点为(c,d),则
(d+1)/(c-5)=-1/2,2*(c+5)/2-(d-1)/2+4=0,解得:c=-7,d=5
则点(-7,-5)和点(-7,5)都在直线BC上,易得出直线BC的方程就是x=-7.
楼主,不知道对不对啊!
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
- 1表达认真的四字成语
- 2安培力什么时候不做功?怎么有的题明明有安培力却说:电阻R上产生的的热量等于金属棒重力势能的减少
- 3第一题:设A={(x,y)|x+y=3,(x,y是自然数)},则A的非空真子集有__个
- 49根火柴摆五个正三角形
- 5爸爸的花儿落了 文中作者一共回忆了几件事,运用了什么叙述方法
- 6为什么会有流星,它是怎样形成的?
- 7如图所示电路,电源电压不变.闭合开关S,当滑片P置于变阻器的中点时,电压表的示数为4V;当滑片P置于变阻器的b端时,电压表的示数变化了2V,在15s内定值电阻R1产生的热量为60J.则下列结
- 8钢铁是怎样炼成的(读后感)100字左右
- 9设A、B是两个非空集合,定义A与B差集为A-B={x|x∈A,且x∉B},则A-(A-B)等于( ) A.A B.B C.A∩B D.A∪B
- 10walk straight on the north street对吗
热门考点
- 1三角形的底是26米,比高长16米,这个三角形的面积是_平方米.
- 2一个王字加一个景字怎么读?
- 3已知4x-3y-6z=0,x+2y-7y=0(xyz≠0),求代数式5x^2+2y^2-z^2/2x^2-3y^2-10z^2的值.
- 41道科学题 温度计是利用水银.酒精等液体________的原理制成的.
- 5over the weekend mist people s_________ their time in many different ways
- 6写出六种蔬菜的英语单词?
- 7已知|a|=2√2,|b|=3,a与b的夹角为45°,求使向量a+λb与λa+b的夹角是锐角时,λ的取值范围
- 8甲、乙、丙三人共有人民币168元,第一次甲拿出与乙相同的钱数给乙;第二次乙拿出与丙相同的钱数给丙;第三次丙拿出与甲相同的钱数给甲,这时甲、乙、丙三人钱数恰好相等.原来甲比
- 9一支铅笔是“支”还是“枝”
- 10双曲线x^2/a^2-y^2/b^2=1的离心率为2,坐标原点到直线AB的距离为根号3/2,其中A(0,-b).B(a,0),求双曲线方程