题目
如图,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E为AB中点,EF∥DC交BC于点F,求EF的长.
提问时间:2020-08-10
答案
解法一:如图1,过点D作DG⊥BC于点G.
∵AD∥BC,∠B=90°,
∴∠A=90度.
可得四边形ABGD为矩形.
∴BG=AD=1,AB=DG.
∵BC=4,
∴GC=3.
∵∠DGC=90°,∠C=45°,
∴∠CDG=45度.
∴DG=GC=3.
∴AB=3.
又∵E为AB中点,
∴BE=
AB=
.
∵EF∥DC,
∴∠EFB=45度.
在△BEF中,∠B=90度.
∴EF=
=
∵AD∥BC,∠B=90°,
∴∠A=90度.
可得四边形ABGD为矩形.
∴BG=AD=1,AB=DG.
∵BC=4,
∴GC=3.
∵∠DGC=90°,∠C=45°,
∴∠CDG=45度.
∴DG=GC=3.
∴AB=3.
又∵E为AB中点,
∴BE=
1 |
2 |
3 |
2 |
∵EF∥DC,
∴∠EFB=45度.
在△BEF中,∠B=90度.
∴EF=
BE |
sin45° |
3 |
2 |