当前位置: > 求极限lim(x->0)(x+e^x)^2/x...
题目
求极限lim(x->0)(x+e^x)^2/x

提问时间:2020-08-10

答案
∵lim(x->0)[ln(x+e^x)/x]=lim(x->0)[(1+e^x)/(x+e^x)] (0/0型极限,应用罗比达法则)
=(1+1)/(0+1)
=2
∴lim(x->0)[(x+e^x)^(2/x)]=lim(x->0){e^[(2/x)ln(x+e^x)]}
=e^{2*lim(x->0)[ln(x+e^x)/x]}
=e^(2*2)
=e^4.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.