当前位置: > 设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式...
题目
设正整数数列{an}的前n项和Sn满足Sn=1/4(an+1)^2,求数列{an}的通项公式

提问时间:2020-08-10

答案
Sn=(1/4)(an+1)^2
S(n-1)=(1/4)[a(n-1)+1]^2
相减
且an=Sn-S(n-1),
所以4an=(an+1)^2-[a(n-1)+1]^2
[a(n-1)+1]^2=(an+1)^2-4an=(an-1)^2
a(n-1)+1=an-1或a(n-1)+1=-an+1
若a(n-1)+1=-an+1
a(n-1)+a(n)=0
和an是正整数数列矛盾
所以a(n-1)+1=an-1
an-a(n-1)=2
所以an是等差数列
d=2
a1=S1
所以a1=1/4(a1+1)^2
(a1-1)^2=0
a1=1
an=1+2(n-1)=2n-1
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.