当前位置: > 函数sin2X+sin(2X+pai/3) / cos2X+cos(2X+pai/3)的最小正周期是...
题目
函数sin2X+sin(2X+pai/3) / cos2X+cos(2X+pai/3)的最小正周期是
[ sin2X+sin(2X+pai/3) ] 除于 [ cos2X+cos(2X+pai/3) ]

提问时间:2020-08-10

答案
用和差化积公式.
原式={[2sin(2x+2x+π/3)/2]*cos(2x-2x-π/3]/2}/{[2cos(2x+2x+π/3)/2]*cos(2x-2x-π/3)/2}.
=[sin(2x+π/6)*cos(-π/6)]/[cos(2x+π/6)*cos(-π/6)].
=sin(2x+π/6)/cos(2x+π/6).
=tan(2x+π/6).
∵正切函数的最小正周期为π,∴原式的最小正周期为T=π/2.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.