题目
根据条件,求复数z在复平面内的对应点轨迹的普通方程(1)z^2+9/z^2属于R(2)z/(z-1)为纯虚数
提问时间:2020-08-10
答案
1)令z=x+iy, 则
z^2+9/z^2=(x+iy)^2+9/(x+iy)^2为实数
=x^2-y^2+2ixy+9(x-iy)^2/(x^2+y^2)^2
=x^2-y^2+2ixy+9(x^2-y^2-2ixy)/(x^2+y^2)^2
因此虚部=0
即2xy-18xy/(x^2+y^2)^2=0
xy[(x^2+y^2)^2-9]=0
所以x=0或y=0,或x^2+y^2=3
轨迹为x,y轴(除去原点)及圆x^2+y^2=3
2) 令z=x+iy
z/(z-1)=(x+iy)/(x-1+iy)=(x+iy)(x-1-iy)/[(x-1)^2+y^2]
=[x(x-1)+y-iy]/[(x-1)^2+y^2]
为纯虚数,则有x(x-1)+y=0, 且y≠0
即y=x-x^2, 且y≠0, (即x≠0,1)
这是抛物线, 只是除去其中与轴的2个交点(0,0),(1,0)
z^2+9/z^2=(x+iy)^2+9/(x+iy)^2为实数
=x^2-y^2+2ixy+9(x-iy)^2/(x^2+y^2)^2
=x^2-y^2+2ixy+9(x^2-y^2-2ixy)/(x^2+y^2)^2
因此虚部=0
即2xy-18xy/(x^2+y^2)^2=0
xy[(x^2+y^2)^2-9]=0
所以x=0或y=0,或x^2+y^2=3
轨迹为x,y轴(除去原点)及圆x^2+y^2=3
2) 令z=x+iy
z/(z-1)=(x+iy)/(x-1+iy)=(x+iy)(x-1-iy)/[(x-1)^2+y^2]
=[x(x-1)+y-iy]/[(x-1)^2+y^2]
为纯虚数,则有x(x-1)+y=0, 且y≠0
即y=x-x^2, 且y≠0, (即x≠0,1)
这是抛物线, 只是除去其中与轴的2个交点(0,0),(1,0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点