当前位置: > 从1到100的自然数中,所有不能被9整除的数之和是多少?...
题目
从1到100的自然数中,所有不能被9整除的数之和是多少?

提问时间:2020-08-09

答案
首先计算 从1到100所有数之总和S1,然后再求出从1到100之间所有9的倍数之和S2.从S1中扣除S2,就得到了“从1到100的自然数中,所有不能被9整除的数的和”.
对于S1,它等于 (首项+尾项)×项数÷2=(1+100)×100÷2=5050
对于S2,它等于 1×9+2×9+3×9+……+11×9=(1+2+3+……+11)×9
从1到11的各数之和 等于 中间项6乘以总共的项数11.因此
S2=6×11×9=594
从5050中扣除这594,即为“从1到100的自然数中,所有不能被9整除的数的和 ”,该值为 5050-594=4456
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.