当前位置: > 已知f(x)=lg(x+1),g(x)=2lg(2x+t)(t∈R,t是参数)....
题目
已知f(x)=lg(x+1),g(x)=2lg(2x+t)(t∈R,t是参数).
如果X∈[0,1],f(x)≤g(x)恒成立,求参数t的取值范围?

提问时间:2020-08-08

答案
f(x)≤g(x)
lg(x+1)≤2lg(2x+t)
x+1≤(2x+t)^2
F(x)=4x^2+(4t-1)x+t^2-1≥0
△=(4t-1)^2-4*4(t^2-1)=-8t+17≤0,t≥17/8时,F(x)≥0恒成立
△>0时
对称轴-(4t-1)/8≥1,t≤1/4时
F(1)=4+(4t-1)+t^2-1=t^2+4t+2=(t+2)^2-2≥0
t≥-2+√2,或,t≤-2-√2
即:-2+√2≤t≤1/4,或,t≤-2-√2
对称轴-(4t-1)/8≤0,t≥1/4时
F(0)=t^2-1≥0
t≥1,或,t≤-1
即:t≥1
所以,参数t的取值范围:(-∞,-2-√2]U[-2+√2,1/4]U[1,+∞)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.