当前位置: > 数的由来和发展的论文...
题目
数的由来和发展的论文
那个要怎么谢,发篇参考参考

提问时间:2020-08-08

答案
数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大不相同.
古罗马的数字相当进步,现在许多老式挂钟上还常常使用.实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000).这7个符号位置上不论怎样变化,它所代表的数字都是不变的.它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍.如:“III”表示“3”;“XXX”表示“30”.
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如“VI”表示“6”,“DC”表示“600”.一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如“IV”表示“4”,“XL”表示“40”,“VD”表示“495”.
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍.
其他国家和地区的人民,则是普遍认同十位进制的记数符号,即1、2、3、4、5、6、7、8、9,遇到“零”就用黑点“·”表示,比如“6708”,就可以表示为“67·8”.后来这个表示“零”的“·”,逐渐变成了“0”.
如果你细心观察的话,会发现罗马数字中没有“0”.其实在公元5世纪时,“0”已经传入罗马.但罗马教皇凶残而且守旧.他不允许任何使用“0”.有一位罗马学者在笔记中记载了关于使用“0”的一些好处和说明,就被教皇召去,施行了拶刑,使他再也不能握笔写字.
现在世界通用的数符号1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字.实际上它们是古代印度人最早使用的.后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字.
附:后来人们发现,仅仅能表示自然数是远远不行的.如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了.自然数、分数和零,通称为算术数.自然数也称为正整数.
接着人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退,为了表示这样的量,又产生了负数.正整数、负整数和零,统称为整数.如果再加上正分数和负分数,就统称为有理数.公元前2500年,毕达哥拉斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它,这个新数的出现使毕达哥拉斯感到震惊,紧接着人们又发现了很多不能用两整数之比写出来的数,如圆周率就是最重要的一个,人们就把这些数称作无理数.有理数和无理数一起统称为实数.但在解方程的时候常常需要开平方,如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁.于是数学家们就规定用符号“i”表示“-1”的平方根,即,虚数就这样诞生了.
数的概念发展到虚数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了.可是1843年10月16日,英国数学家哈密尔顿又提出了“四元数”的概念.所谓四元数,就是由一个标量 (实数)和一个向量(其中x、y、z为实数)组成的数.四元数在数论、群论、量子理论以及相对论等方面有广泛的应用.与此同时,人们还开展了对“多元数”理论的研究.到目前为止,数的家庭已发展得十分庞大.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.