当前位置: > 关于高中数学圆锥曲线中椭圆的问题...
题目
关于高中数学圆锥曲线中椭圆的问题
已知F1,F2为椭圆x^2+y^2/2=1的两个焦点,AB是过焦点F1的一条动弦 求三角形ABF2面积的最大值
椭圆a=√2,b=1,c=1
设A点坐标(Xa,Ya),B点坐标(Xb,Yb)
三角形ABF2面积 = c* |Xa-Xb| = |Xa-Xb|
(Xa,Ya),(Xb,Yb)设方程组
y = kx -1 (1)
x^2+y^2/2=1 (2)
(1)代入(2),化简
(2+k^2)x^2-2kx-1 = 0
|Xa-Xb| = √(8k^2+8)/(2+k^2)
当k = 0时,
|Xa-Xb| = √2 为极大值
三角形ABF2面积 = |Xa-Xb|
极大值为√2
为什么|Xa-Xb| = √(8k^2+8)/(2+k^2)

提问时间:2020-08-08

答案
这个是利用二次方程的韦达定理吧:
AX^2+BX+C=0(A不等于0)
韦达定理:
如果有解,那么这个二次方程的解X1、X2与系数之间有以下关系:
X1+X2=-B/A
X1*X2=C/A
这个是可以根据公式解自己推出来的啦
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.