当前位置: > 已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M. (1)求证:AB=CD; (2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量...
题目
已知:如图,AF平分∠BAC,BC⊥AF,垂足为E,点D与点A关于点E对称,PB分别与线段CF,AF相交于P,M.
(1)求证:AB=CD;
(2)若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.

提问时间:2020-08-08

答案
(1)证明:∵AF平分∠BAC,
∴∠CAD=∠DAB=
1
2
∠BAC,
∵D与A关于E对称,
∴E为AD中点,
∵BC⊥AD,
∴BC为AD的中垂线,
∴AC=CD.
在Rt△ACE和Rt△ABE中,(注:证全等也可得到AC=CD)
∠CAD+∠ACE=∠DAB+∠ABE=90°,∠CAD=∠DAB,
∴∠ACE=∠ABE,
∴AC=AB(注:证全等也可得到AC=AB),
∴AB=CD.
(2)∠F=∠MCD,理由如下:
∵∠BAC=2∠MPC,
又∵∠BAC=2∠CAD,
∴∠MPC=∠CAD,
∵AC=CD,
∴∠CAD=∠CDA,
∴∠MPC=∠CDA,
∴∠MPF=∠CDM,
∵AC=AB,AE⊥BC,
∴CE=BE(注:证全等也可得到CE=BE),
∴AM为BC的中垂线,
∴CM=BM.(注:证全等也可得到CM=BM)
∵EM⊥BC,
∴EM平分∠CMB(等腰三角形三线合一).
∴∠CME=∠BME(注:证全等也可得到∠CME=∠BME.),
∵∠BME=∠PMF,
∴∠PMF=∠CME,
∴∠MCD=∠F.(注:证三角形相似也可得到∠MCD=∠F)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.