当前位置: > 函数f(x)=sin(2x-π/4)-2√2sin²x 的最小正周期是...
题目
函数f(x)=sin(2x-π/4)-2√2sin²x 的最小正周期是
参考里写的是啥,没看懂

提问时间:2020-08-07

答案
f(x)=sin(2x-π/4)-2根号2sin^2x
=sin(2x-π/4)-2根号(1-cos2x)
该式中第一项的最小正周期为π,后一项最小正周期也为π
因此f(x)的最小正周期为π
参考:
f(x)=根号2sin2x/2-根号2cos2x/2-2根号2(1-cos2x)/2
=根号2sin2x/2-根号2cos2x/2-根号2+根号2cos2x
=根号2sin2x/2+根号2cos2x/2-根号2
=sin(2x+π/4)-根号2
周期T=2π/w=2π/2=π
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.