当前位置: > 设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,若B⊆A,求实数a的取值范围....
题目
设A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0},其中x∈R,若B⊆A,求实数a的取值范围.

提问时间:2020-08-07

答案
A═{x|x2+4x=0}={0,-4},∵B⊆A.①若B=∅时,△=4(a+1)2-4(a2-1)<0,得a<-1;②若B={0},则△=0a2−1=0,解得a=-1;③B={-4}时,则△=0(−4)2−8(a+1)+a2−1=0,此时方程组无解.④B={0,-4},−2(a+1)...
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.