当前位置: > 设f(x)是一周期为T的函数,则f(x)+f(2x)+f(3x)+f(4x)的周期是几T?...
题目
设f(x)是一周期为T的函数,则f(x)+f(2x)+f(3x)+f(4x)的周期是几T?

提问时间:2020-08-07

答案
f(x)的周期为T;那么,f(2x)的周期为T/2,同理,
f(3x),f(4x)的周期分别为:T/3,T/4.
令:Y=f(x)+f(2x)+f(3x)+f(4x),
当 Y(nx)=f(x+nT)+ f[2(x+nT)]+f[3(x+nT)]
+f[4(x+nT)]=f(x)+f(2x)+f(3x)+f(4x)
n=1时,n为最小.所以,Y的周期为1.
即:f(x)+f(2x)+f(3x)+f(4x)的周期为1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.