当前位置: > 定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围....
题目
定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.

提问时间:2020-08-07

答案
f(a2-a-1)+f(4a-5)>0⇔f(a2-a-1)>-f(4a-5),
因为函数y=f(x)是奇函数,所以上式变为f(a2-a-1)>f(-4a+5),
又因为定义在[-1,1]上的函数y=f(x)是减函数,所以
−1≤a2−a−1≤1
−1≤4a−5≤1
a2−a−1<−4a+5

解得:1≤a<
−3+
33
2
将f(a2-a-1)+f(4a-5)>0变为f(a2-a-1)>-f(4a-5),
利用奇函数,变为f(a2-a-1)>f(-4a+5),再由单调性转化为直接关于a的不等式求解即可.

奇函数;函数单调性的性质.

本题考查函数奇偶性和单调性的应用,考查运用所学知识解决问题的能力.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.