当前位置: > 若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx...
题目
若f(x)在[0,1]上连续,证明 ∫【上π/2下0】f(sinx)dx= ∫【上π/2下0】f(cosx)dx

提问时间:2020-08-07

答案
令 y=π/2-x,则x=π/2-y
∫(π/2~0)f(cosx)dx=∫(0~π/2) f(cos(π/2-y))d(π/2-y)
=∫(0~π/2) -f(siny)dy
=-∫(0~π/2) f(siny)dy
=∫(π/2~0)f(siny)dy
=∫(π/2~0)f(sinx)dx
请采纳答案,支持我一下.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.