题目
在锐角三角形ABC中,已知内角A,B,C所对的边分别为a,b,c,向量m=(2sin(A+C),根号3),n=(cos2B,2cos平方B/2-1)
且向量m,n共线
(1)求角B的大小;(2)如果b=1,求三角形ABC的面积最大
且向量m,n共线
(1)求角B的大小;(2)如果b=1,求三角形ABC的面积最大
提问时间:2020-08-07
答案
(1)
m,n共线
=>
2sin(A+C)/√3 = cos2B/(2(cos(B/2))^2-1)
2sin(A+C) .cosB = √3cos2B
2sinBcosB = √3cos2B
sin2B=√3cos2B
tan2B = √3
B = π/6
(2)
b=1
by sine-rule
a/sinA =b/sinB
a = (b/sinB)sinA
=2sinA
and
c= 2sinC = 2sin(5π/6-A)
A1=area of ABC
=(1/2)acsinB
= (1/2)(2sinA)(2sin(5π/6-A))(1/2)
= sinAsin(5π/6-A)
=(1/2)(cos(2A-5π/6) - cos5π/6)
=(1/2)(cos(2A-5π/6) +√3/2)
max A1 at cos(2A-5π/6)=1
max A1 = (1/2)(1+√3/2)
m,n共线
=>
2sin(A+C)/√3 = cos2B/(2(cos(B/2))^2-1)
2sin(A+C) .cosB = √3cos2B
2sinBcosB = √3cos2B
sin2B=√3cos2B
tan2B = √3
B = π/6
(2)
b=1
by sine-rule
a/sinA =b/sinB
a = (b/sinB)sinA
=2sinA
and
c= 2sinC = 2sin(5π/6-A)
A1=area of ABC
=(1/2)acsinB
= (1/2)(2sinA)(2sin(5π/6-A))(1/2)
= sinAsin(5π/6-A)
=(1/2)(cos(2A-5π/6) - cos5π/6)
=(1/2)(cos(2A-5π/6) +√3/2)
max A1 at cos(2A-5π/6)=1
max A1 = (1/2)(1+√3/2)
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点
- 1直线y=1/2x+b是曲线y=lnx(x>0)的一条切线,求实数b的值
- 2判断“(1/4)^x,(1/2)^x,2^(x-4)成等比数列”是“lgx,lg(x+2),lg(2x+1)成等差数列”的什么条件.
- 3若2a+|4-5a|+|1-3a|的值是一个定值,求a的取值范围.
- 43-甲氧基-苯甲醛的结构式
- 5双曲线 为什么把1换成0,就得渐近线
- 6一兆元等于多少亿元
- 7现由甲、乙两个油库向A、B两地运粮.已知甲粮库可调出50吨大米,乙粮库可调出40吨..见下
- 8The three men tried many times to sneak across the border into the neighboring country,.
- 9一棵高大的橡树像草原的哨兵,挺立在路旁. 句子主干是什么,最好划分一下句子成分
- 10The children feel__Michael A.sorry for B.sorry of c.sorry to