题目
如图所示,设P是等边△ABC的一边BC上的任意一点,且BP/CP=M/N,连接AP,他的垂直平分线分别交AB、AC于M、N
当M/N=2/3时,求AM/AN的值
证明:连接PM,PN,
∵MN垂直平分AP,
∴AM=MP,AN=PN,又MN为公共边,
∴△AMN∽≌△PMN(SSS),
∴∠MPN=∠BAC=60°,
∵∠BPM+∠CPN=120°,∠BPM+∠BMP=120°,
∴∠BMP=∠CPN,
由∠B=∠C=60°,
∴△MPB∽△PNC,
∴BPNC=BMPC,
即BP•PC=BM•NC.
当M/N=2/3时,求AM/AN的值
证明:连接PM,PN,
∵MN垂直平分AP,
∴AM=MP,AN=PN,又MN为公共边,
∴△AMN∽≌△PMN(SSS),
∴∠MPN=∠BAC=60°,
∵∠BPM+∠CPN=120°,∠BPM+∠BMP=120°,
∴∠BMP=∠CPN,
由∠B=∠C=60°,
∴△MPB∽△PNC,
∴BPNC=BMPC,
即BP•PC=BM•NC.
提问时间:2020-08-07
答案
证明:连接PM,PN,
∵MN垂直平分AP,
∴AM=MP,AN=PN,又MN为公共边,
∴△AMN≌△PMN(SSS),
∴∠MPN=∠BAC=60°,
∵∠BPM+∠CPN=120°,∠BPM+∠BMP=120°,
∴∠BMP=∠CPN,
由∠B=∠C=60°,
∴△MPB∽△PNC,
∴MP/PN=BP/CN=BM/PC,
令MP=x,PN=y,BC=5,
x/y=2/(5-y)=(5-x)/3
x=19/8,y=19/7
因此,MP/PN=(19/8)/(19/7)=7/8,
∴AM/AN=MP/NP=7/8.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1cos43/4π与sin(-21/5π)比大小
- 210篇伊索寓言读书笔记
- 3请问“出单去传”是什么意思?“传”在此处读什么音?
- 4五分之十七除以五十一等于?
- 580*100*8的304不锈钢每米多少KG
- 6一个分数,分子和分母的和是53,如果分母加上17,这个分数就化简成1/6,这个分数是多
- 7Finally,you come to rescue me.You take me away,but on the way , you lose me
- 81mol某烃结构简式是
- 9德国科学家贝塞尔推算出天鹅座第61颗暗星距地球120 000 000 000 000千米,比太阳距地球还远690 000倍.
- 10More than eighty percent of the people trapped were rescued from the ruins at last