当前位置: > 已知抛物线y=x2+(2k+1)x-k2+k.⑴ 求证 此抛物线与x轴有两个不同的交点.⑵ 当k=1时,...
题目
已知抛物线y=x2+(2k+1)x-k2+k.⑴ 求证 此抛物线与x轴有两个不同的交点.⑵ 当k=1时,
求此抛物线与x轴的交点坐标.

提问时间:2020-08-07

答案
解1Δ=(2k+1)²-4*1*(-k²+k)
=4k²+4k+1+4k²-4k
=8k²+1>0
即此抛物线与x轴有两个不同的交点
2当k=1,y=x2+(2k+1)x-k2+k=x2+(2+1)x-1+1=x²+3x
即令x²+2x=0
即x(x+3)=0
即x=0或x=-3
即交点(0,0)和(-3,0)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.